Project structure of: kyegomez/MultiModalMamba
example.py
Python script uses libraries, creates input tensors, initializes model, and prints shape.__init__.py
Imports and lists MultiModalMambaBlock, MMM classes.block.py
MultiModal Mamba Fusion in PyTorchmodel.py
Multi-modal modeling with fusion techniques.
model_example.py
Imports torch, creates MMM model with parameters, passes x and img.pyproject.toml
Configures Python project "mmm-zeta" with dependencies and dev tools.README.md
Versatile AI model: Vision Transformer + Mamba, fast & customizable.requirements.txt
Specifies required Python package versions.auto_docs.py
Auto-generates Markdown docs for classes using OpenAI model.auto_docs_functions.py
Generate Markdown docs with OpenAI model for zeta.ops functions.auto_tests.py
Automated test & doc generation with GPT-4 in parallel threads.auto_tests_functions.py
Automates documentation/testing for Python modules using gpt-4.docs.py
Professional docs, markdown, multi-head attention, test best practices.mkdocs_handler.py
Generate ".md" file list from directory.
code_quality.sh
Automates Python code style fixes and formatting in tests directory.delpycache.py
Delete all pycache directories in specified directory.get_package_requirements.py
Extracts package names and versions from requirements.txt for installation.requirementstxt_to_pyproject.py
Automates pyproject.toml dependencies' version updates efficiently.test_name.sh
Renames tests with 'test_' prefix, colored output.tests.sh
Tests all Python scripts in directory.
test_benchmarks.py
Benchmark MambaBlock and Transformer processing timestest_blocks.py
MultiModalMambaBlock test fixture tests.test_model.py
MMM model test fixture with fusion methods and return_embeddings flag testing.