Project structure of: kyegomez/RT-X
RT-X
Evaluates real-time efficient image-text transformer performance.
efficient_net_example.py
EfficientNet film model processes image
examples
RTX models: Training, pretraining, evaluation and image-text processing
pyproject.toml
PyTorch, EfficientNet, Python 3.8, Ruff, Black configuration for "rtx-torch" package.
README.md
Pytorch RT-X models: RTX-1, RTX-2, 7D output, install via pip
requirements.txt
Python packages: Torch, Einops, EfficientNet, Torchvision, Pytest; ZetaScale 0.8.3 needed.
rtx
Real-time image-text transformer with attention
run_example.py
Run example function with argument parser.
tests.py
Tests EfficientNetFilm model features and exceptions.
tests
Tests RTX1 model and data processing.