Autonomous Machines & Society.

2022-05-27
推荐系统 Gnn

字节跳动 抖音推荐算法 Wide&Deep


1、muricoca/crab

https://github.com/muricoca/crab

2、ibayer/fastFM

https://github.com/ibayer/fastFM

3、Mendeley/mrec

https://github.com/mendeley/mrec

4、MrChrisJohnson/logistic-mf

https://github.com/MrChrisJohnson/logistic-mf

5、jadianes/winerama-recommender-tutorial

https://github.com/jadianes/winerama-recommender-tutorial

6、ocelma/python-recsys

https://github.com/ocelma/python-recsys

7、benfred/implicit

https://github.com/benfred/implicit

8、lyst/lightfm

https://github.com/lyst/lightfm

9、python-recsys/crab

https://github.com/python-recsys/crab

10、NicolasHug/Surprise

https://github.com/NicolasHug/Surprise


linkedin gdmix simple and memory effective personalized ranking

datawhale fun-rec 推荐系统入门教程

datawhale rechub

image to text, text to image, clip as image/text embeddings

deep recommendation using tensorflow 1.15

image recommendation system

不同的人有不同喜好

不同的人和不同的人说话

不同的产品有不同的特征

不同的产品和不同的产品被一起推荐

人对产品的接受度

youzan has an ai platform called trexpark, offering chinese NLP and image models pretrained from e-commerce databases.

https://github.com/youzanai/trexpark

session based recommendation system:

https://github.com/CRIPAC-DIG/SR-GNN

decide the feedback embeddings:

https://huggingface.co/youzanai/bert-product-comment-chinese

conversational embeddings:

https://huggingface.co/youzanai/bert-customer-message-chinese

neo4j developer build a recommendation engine:

https://neo4j.com/developer/cypher/guide-build-a-recommendation-engine/

torch_geometric(PyG) documentation:

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GatedGraphConv

setup GCN using PyG:

https://zhuanlan.zhihu.com/p/400078504

tagspace text classification via hashtags:

https://paddlerec.readthedocs.io/en/latest/models/contentunderstanding/tagspace.html

gnn is based on basic data/label models and provide high-level reasoning and predictions.

neo4j graph academy practical usage:

https://graphacademy.neo4j.com/categories/

https://neo4j.com/graphacademy/training-iga-40/12-iga-40-ingredient-analysis/

video segments have different features and orders. predict missing links. predict categories semi-supervised or unsupervised.

video-image-text-music correlation and predict internal relationships, categories.

recommendation system:

paddlerec(multimodal), torchrec(cuda==11.3, build failed due to unable to find ATen from torch/include.)

https://neo4j.com/docs/graph-data-science/current/end-to-end-examples/fastrp-knn-example/

link prediction:

https://github.com/Orbifold/pyg-link-prediction/blob/main/run.py

how to use pyg for link prediction:

https://github.com/pyg-team/pytorch_geometric/issues/634

dgl, install from source, with link prediction:

https://docs.dgl.ai/tutorials/blitz/4_link_predict.html

https://github.com/dmlc/dgl

https://docs.dgl.ai/guide_cn/training-link.html#guide-cn-training-link-prediction

gnn intro:

https://cnvrg.io/graph-neural-networks/

gnn applications:

Node classification: The objective here is to predict the labels of nodes by considering the labels of their neighbors.

Link prediction: In this case, the goal is to predict the relationship between various entities in a graph. This can for example be applied in prediction connections for social networks.

Graph clustering: This involves dividing the nodes of a graph into clusters. The partitioning can be done based on edge weights or edge distances or by considering the graphs as objects and grouping similar objects together.

Graph classification: This entails classifying a graph into a category. This can be applied in social network analysis and categorizing documents in natural language processing. Other applications in NLP include text classification, extracting semantic relationships between texts, and sequence labeling.

Computer vision: In the computer vision world, GNNs can be used to generate regions of interest for object detection. They can also be used in image classification whereby a scene graph is generated. The scene generation model then identifies objects in the image and the semantic relationship between them. Other applications in this field include interaction detection and region classification.

Read More

2022-05-24
视频分析处理 剧本生成

视频分析处理 视频摘要 剧本生成

自动抠像 最新 2022 较小的性能消耗:

https://github.com/hkchengrex/XMem

我fork的项目:https://github.com/ProphetHJK/XMem

我fork后添加了一些小工具,包括绿幕生成,蒙版视频生成,中文教程等

simple video captioning:

https://pythonawesome.com/a-simple-implementation-of-video-captioning/

https://github.com/232525/videocaptioning.pytorch?ref=pythonawesome.com

https://github.com/xiadingZ/video-caption.pytorch

3d cnn for video classification:

https://github.com/kcct-fujimotolab/3DCNN

end-to-end video image classification by facebook:

https://github.com/facebookresearch/ClassyVision

video understanding models and datasets:

https://github.com/sujiongming/awesome-video-understanding

video classification dataset:

​video_type_dict​ ​=​ {​’360VR’​: ​’VR’​, ​’4k’​: ​’4K’​, ​’Technology’​: ​’科技’​, ​’Sport’​: ​’运动’​, ​’Timelapse’​: ​’延时’​,

​’Aerial’​: ​’航拍’​, ​’Animals’​: ​’动物’​, ​’Sea’​: ​’大海’​, ​’Beach’​: ​’海滩’​, ​’space’​: ​’太空’​,

​’stars’​: ​’星空’​, ​’City’​: ​’城市’​, ​’Business’​: ​’商业’​, ​’Underwater’​: ​’水下摄影’​,

​’Wedding’​: ​’婚礼’​, ​’Archival’​: ​’档案’​, ​’Backgrounds’​: ​’背景’​, ​’Alpha Channel’​: ​’透明通道’​,

​’Intro’​: ​’开场’​, ​’Celebration’​: ​’庆典’​, ​’Clouds’​: ​’云彩’​, ​’Corporate’​: ​’企业’​,

​’Explosion’​: ​’爆炸’​, ​’Film’​: ​’电影镜头’​, ​’Green Screen’​: ​’绿幕’​, ​’Military’​: ​’军事’​,

​’Nature’​: ​’自然’​, ​’News’​: ​’新闻’​, ​’R3d’​: ​’R3d’​, ​’Romantic’​: ​’浪漫’​, ​’Abstract’​: ​’抽象’​}

https://github.com/yuanxiaosc/Multimodal-short-video-dataset-and-baseline-classification-model

rnn for human action recognization:

https://github.com/stuarteiffert/RNN-for-Human-Activity-Recognition-using-2D-Pose-Input

video script introduction and generation:

https://sharetxt.live/blog/how-to-generate-a-youtube-video-script-with-ai#:~:text=%20How%20to%20use%20Chibi.ai%20to%20create%20a,scan%20through%20your%20text%20and%20generate...%20More%20

fight detection using pose estimation and rnn:

https://github.com/imsoo/fight_detection

video summarizer to summarized video based on video feature:

https://github.com/Lalit-ai/Video-Summary-Generator

awesome action recognition:

https://github.com/jinwchoi/awesome-action-recognition

temporal model for video understanding:

https://github.com/mit-han-lab/temporal-shift-module

https://github.com/mit-han-lab/temporal-shift-module

https://github.com/yjxiong/tsn-pytorch

time space attention for video understanding(timesformer):

https://github.com/facebookresearch/TimeSformer

video understanding by alibaba:

https://github.com/alibaba-mmai-research/pytorch-video-understanding

video object segmentation:

https://github.com/yoxu515/aot-benchmark?ref=pythonawesome.com

video scene segmentation:

https://github.com/kakaobrain/bassl?ref=pythonawesome.com

mmaction detect actions in video:

https://pythonawesome.com/an-open-source-toolbox-for-video-understanding-based-on-pytorch/

https://github.com/open-mmlab/mmaction2

dense video captioning:

https://www.opensourceagenda.com/projects/dense-video-captioning-pytorch

https://www.opensourceagenda.com/projects/dense-video-captioning-pytorch

seq2seq video captioning:

https://blog.csdn.net/u013010889/article/details/80087601

2d cnn with LSTM video classification:

https://blog.csdn.net/qq_43493208/article/details/104387182

spp-net for image shape unification:

https://github.com/peace195/sppnet

https://github.com/yueruchen/sppnet-pytorch

running pretrained pytorchvideo video classification model from zoo:

https://pytorchvideo.org/docs/tutorial_torchhub_inference

pytorchvideo model zoo:

https://pytorchvideo.readthedocs.io/en/latest/model_zoo.html

(arxiv) end to end generative pretraining multimodal video captioning mv-gpt:

https://arxiv.org/abs/2201.08264v1

video captioning using encoder-decoder:

https://github.com/Shreyz-max/Video-Captioning

video captioning video2text keras implementation:

https://github.com/alvinbhou/Video2Text

video summarization:

https://github.com/shruti-jadon/Video-Summarization-using-Keyframe-Extraction-and-Video-Skimming

pytorch_video video classification:

https://pytorchvideo.org/docs/tutorial_classification

video feature extractor:

https://github.com/hobincar/pytorch-video-feature-extractor

Read More

2022-05-24
开放Api 信息来源

Read More

2022-05-24
海外哔哩哔哩

bilibili.tv

Read More

2022-05-24
Qq 微信 信息提取 Bot搭建

qq聊天记录导出 qq消息导出

微信聊天记录导出

聊天记录渲染成图片 render chat record to picture

conclusion so far: people like to use vue to recreate popular interfaces, and you may grab some interface from it.

vue-wechat

🔥 基于Vue2.0高仿微信App的单页应用

vue-qq

一个长得像QQ的demo

vue qq 聊天界面组件库

1
2
npm install vue-mchat

vue 本项目是一个在线聊天系统,最大程度的还原了Mac客户端QQ。

vue-miniQQ————基于Vue2实现的仿手机QQ单页面应用

基于Vue2实现的单页面应用 qq界面模仿

demo大师 qq界面模仿 vuejs 要钱

demo大师 vue3 仿微信/qq界面 免费

render chat record to picture 微信聊天记录渲染成图片

html css渲染

仿QQ android的聊天界面

HTML5手机微信聊天界面代码

HTML5 WebSocket 仿微信界面的网页群聊演示Demo

用html5做的仿微信聊天界面

基于H5技术实现的在线聊天室APP

Simple chatbot exercise using only JavaScript, HTML, CSS

Multi-Room Chat Application

一个基于AngularJS、NodeJS、Express、socket.io搭建的在线聊天室。

facebook like chatroom

qq空间发美女图片把人家的脸要挡住 或者要把脸换了 或者直接使用live2d three.js 甚至3d的渲染模型来把脸给它挡住

somehow the wechat web uos protocol is usable again? check it out.

https://www.npmjs.com/package/wechaty-puppet-wechat

https://github.com/wechaty/puppet-wechat/pull/206

would it be a lot easier if we can send those article/video links to external (out of gfw) social media platforms in their native language? still censorship will be applied.

wechat frida hook on macos:

https://github.com/dounine/wechat-frida

WeChat PC Frida hook:

https://github.com/K265/frida-wechat-sticker

https://github.com/kingking888/frida_wechat_hook

qq号码注册规则

qq群最多可以添加500个群 1500个好友 其中群可加的数量 = max(0,500 - 已加入群数量 - 好友数量)

可以退出一些安静的群 不发红包的群 删除好友

屏蔽别人加我为好友 允许别人拉我进群 自动退出广告群 退出不活跃的群

群一天只能加两三个 或者手机上可以加十个

好友一天可以加三十几个

一个验证QQ群的Python代码

https://www.bilibili.com/read/mobile?id=10044756

frida inject mobile android qq and open qzone:

https://github.com/xhtechxposed/fridainjectqq

search https://qun.qq.com in search engines

可以考虑截图获取QQ群验证问题 或者手机测试 appium

if possible then just use frida/radare2 or some reverse engineering to automate the process.

radare2 -> rizin.re(radare2 fork) based, ida alike, with ghidra decompiler, reverse engineering tool:

https://cutter.re

如何获取进群验证问题?记得可以拦截PC端搜索QQ群接收的数据包获取验证问题 或许不行 总之可以获取到一些参数 查看是否包含验证问题 是不是允许任何人进群 也可以考虑拦截opqqq的通信 或者发送一些通用的加群验证信息 比如“加群学习” “小伙伴一起玩” 之类的 或者用ai模型根据群描述 群主题 生成

一个手机号码可以申请10个qq号,一个手机号绑定的QQ帐号名额上限为10个,但一天一个手机号只能成功注册两到三个

WeChat needs serious reverse engineering like frida.

https://github.com/cixingguangming55555/wechat-bot

有webapi的微信机器人 注入dll到pc

https://github.com/mrsanshui/WeChatPYAPI

可以加好友的python wechat pc hook

https://github.com/snlie/WeChat-Hook

易语言的wechat hook 功能非常全 搜索 加人 有教程链接 教学代码

https://github.com/TonyChen56/WeChatRobot

比较老的wechat逆向模块 wechatapis.dll半天获得不了 有教程链接

https://github.com/wechaty/puppet-xp

frida 驱动的wechat puppet 暂时没有加人 搜索人 在windows上运行

wechat reverse engineering tutorials:

https://github.com/hedada-hc/pc_wechat_hook

https://github.com/zmrbak/PcWeChatHooK

wechaty base framework:

https://github.com/Wechaty/python-wechaty/ (puppet support might be incomplete)

https://github.com/Wechaty/wechaty/

botoy opqbot api for python

https://botoy.opqbot.com/zh_CN/latest/action/

qq opqbot (for wechat it has rstbot) download and install (need gitter.im api token):

https://docs.opqbot.com/guide/manual.html#启动失败

opqbot needs to be reverse engineered or we won’t know what is going on inside.

unofficial opqbot wiki:

https://mcenjoy.cn/opqbotwiki/

wechat bot(non-free wechat puppets):

wechaty

quoted content are controversial and highly viral. must be filtered and classified before proceeding.

quotes are like comments.

Read More

2022-05-24
标题生成

标题生成 封面生成

comparing different image caption models in which you have a bunch of models ready to use

template extraction, neural template generation

封面来源:

利用标题进行图片搜索 其实只能站内搜索 因为站外没有这种图片与文字的对应关系

截取视频截图

b站原图 histogram match 20% 去掉文字 镜像反转 加入随机噪声 旋转1度

利用封面进行图片反向搜索 效果其实不好 并没有想要的照片 只能找到原图 有可能起到去水印的效果 但是有限

reverse image search engine

reverse image search engine

meta image search engine

telegram reverse image search bot


neural template gen is a natural language generator based on templates from harvard nlp, can be used for title generation

根据标签生成广告 同样可以根据标签生成视频标题(推荐) 在千言数据集上训练过

https://huggingface.co/cocoshe/gpt2-chinese-gen-ads-by-keywords?text=My+name+is+Clara+and+I+am

title generator(from description):

https://github.com/harveyaot/DianJing/blob/master/scripts/title_generation_lm.py

https://blog.csdn.net/stay_foolish12/article/details/111661358

cover generation

rectangle packing allow overlapping

when solution is not found, decrease the size of rectangles.

youtube title generator using AI:

https://github.com/gdemos01/YoutubeVideoIdeasGeneratorAI

ai thumbnail generator using pyscenedetect:

https://github.com/yoonhero/ai-thumbnail-generator

image captioning:

https://github.com/ruotianluo/ImageCaptioning.pytorch

youzan clip product title generation:

https://huggingface.co/youzanai/clip-product-title-chinese

paper title generator without description:

https://github.com/csinva/gpt2-paper-title-generator

image captioning using cnn and rnn:

https://github.com/SCK22/image_and_video

image captioning can also be used for video captioning. but that will suffice the accuracy.

keras.io image captioning

https://keras.io/examples/vision/image_captioning/

generate image captions using CLIP and GPT(on medium, click continue reading)

https://towardsai.net/p/l/image-captioning-with-clip-and-gpt

gpt3demo.com has provided a lot of interesting tasks that gpt3 can do. including image captioning. may find video captioning, video classification.

gpt3demo.com provided image captioning libs:

https://gpt3demo.com/category/image-captioning

clipclap

gpt-3 x image captions

visualgpt: generate image captions

https://github.com/Vision-CAIR/VisualGPT

generate stories from pictures, using image transformers and gpt-2, just intro no code

https://www.dataversity.net/image-captioning-generating-stories-from-unstructured-data-using-applied-nlg/

Read More

2022-05-24
Ai训练集标注工具

text annotation tool:

https://github.com/doccano/doccano

sqlite 3 backend:

1
2
pip3 install doccano

video/image annotation tool, needs docker, with online demo:

https://github.com/openvinotoolkit/cvat

image labeling:

https://github.com/heartexlabs/labelImg

with audio video support

https://github.com/heartexlabs/label-studio

with audio transcription support

https://github.com/UniversalDataTool/universal-data-tool

image and audio

https://github.com/Cartucho/OpenLabeling

specialized for yolo bounding boxes

https://github.com/developer0hye/Yolo_Label

Read More

2022-05-24
如何永久的影响世界

如何永久的影响世界 剧本

核弹

权力

大量金钱

基因改造

革命性技术

大众传媒

大规模战争

永生

时空穿越

和外星文明交流

编程

宗教

语言

feedback:

不结婚 不生娃

数学

喝酒

用人

忠诚

领导力

智慧

人类思想

人类本性

一句话改变世界

Read More

2022-05-19
睡觉时间 内脏工作时间

1、内脏器官工作时间:

晚上9-11点为免疫系统(淋巴)排毒时间,此段时间应安静或听音乐,避免太过兴奋。

2、晚间

11-凌晨1点,肝的排毒,需在熟睡中进行,这是美容的黄金时间喔。

3、凌晨1-3点

凌晨1-3点,是胆的排毒,亦同。凌晨3-5点,肺的排毒。此即为何咳嗽的人在这段时间咳得最剧烈,因排毒动作已走到肺;不应用止咳药,以免抑制废积物的排除。

4、凌晨5-7点

凌晨5-7点,大肠的排毒,应上厕所排便。凌晨7-9点,小肠大量吸收营养的时段,应吃早餐。疗病者最好早吃,在6点半前,养生者在7点半前,不吃早餐者应改变习惯,要养成良好的生活习惯,按时吃饭也是很重要的。

5、半夜至凌晨4点

半夜至凌晨4点为脊椎造血时段,必须熟睡,不宜熬夜,年轻人不要再熬夜啦,否则对身体不好。

Read More

2022-05-19
搜狗输入法Ai功能

AI配图 AI帮写 趣聊 翻译 校对

Read More