视频分析处理 剧本生成

video processing
video summarization
video understanding
This article focuses on video analysis using popular frameworks PyTorch and Keras. It offers a range of resources to perform tasks such as classification and summarization, along with access to a pretrained model zoo for further customization. Additionally, it provides a link to a helpful video feature extractor tool.
Published

May 24, 2022


视频分析处理 视频摘要 剧本生成

自动抠像 最新 2022 较小的性能消耗:

https://github.com/hkchengrex/XMem

我fork的项目:https://github.com/ProphetHJK/XMem

我fork后添加了一些小工具,包括绿幕生成,蒙版视频生成,中文教程等

simple video captioning:

https://pythonawesome.com/a-simple-implementation-of-video-captioning/

https://github.com/232525/videocaptioning.pytorch?ref=pythonawesome.com

https://github.com/xiadingZ/video-caption.pytorch

3d cnn for video classification:

https://github.com/kcct-fujimotolab/3DCNN

end-to-end video image classification by facebook:

https://github.com/facebookresearch/ClassyVision

video understanding models and datasets:

https://github.com/sujiongming/awesome-video-understanding

video classification dataset:

​video_type_dict​ ​=​ {​‘360VR’​: ​‘VR’​, ​‘4k’​: ​‘4K’​, ​‘Technology’​: ​‘科技’​, ​‘Sport’​: ​‘运动’​, ​‘Timelapse’​: ​‘延时’​,

​‘Aerial’​: ​‘航拍’​, ​‘Animals’​: ​‘动物’​, ​‘Sea’​: ​‘大海’​, ​‘Beach’​: ​‘海滩’​, ​‘space’​: ​‘太空’​,

​‘stars’​: ​‘星空’​, ​‘City’​: ​‘城市’​, ​‘Business’​: ​‘商业’​, ​‘Underwater’​: ​‘水下摄影’​,

​‘Wedding’​: ​‘婚礼’​, ​‘Archival’​: ​‘档案’​, ​‘Backgrounds’​: ​‘背景’​, ​‘Alpha Channel’​: ​‘透明通道’​,

​‘Intro’​: ​‘开场’​, ​‘Celebration’​: ​‘庆典’​, ​‘Clouds’​: ​‘云彩’​, ​‘Corporate’​: ​‘企业’​,

​‘Explosion’​: ​‘爆炸’​, ​‘Film’​: ​‘电影镜头’​, ​‘Green Screen’​: ​‘绿幕’​, ​‘Military’​: ​‘军事’​,

​‘Nature’​: ​‘自然’​, ​‘News’​: ​‘新闻’​, ​‘R3d’​: ​‘R3d’​, ​‘Romantic’​: ​‘浪漫’​, ​‘Abstract’​: ​‘抽象’​}

https://github.com/yuanxiaosc/Multimodal-short-video-dataset-and-baseline-classification-model

rnn for human action recognization:

https://github.com/stuarteiffert/RNN-for-Human-Activity-Recognition-using-2D-Pose-Input

video script introduction and generation:

https://sharetxt.live/blog/how-to-generate-a-youtube-video-script-with-ai#:~:text=%20How%20to%20use%20Chibi.ai%20to%20create%20a,scan%20through%20your%20text%20and%20generate…%20More%20

fight detection using pose estimation and rnn:

https://github.com/imsoo/fight_detection

video summarizer to summarized video based on video feature:

https://github.com/Lalit-ai/Video-Summary-Generator

awesome action recognition:

https://github.com/jinwchoi/awesome-action-recognition

temporal model for video understanding:

https://github.com/mit-han-lab/temporal-shift-module

https://github.com/mit-han-lab/temporal-shift-module

https://github.com/yjxiong/tsn-pytorch

time space attention for video understanding(timesformer):

https://github.com/facebookresearch/TimeSformer

video understanding by alibaba:

https://github.com/alibaba-mmai-research/pytorch-video-understanding

video object segmentation:

https://github.com/yoxu515/aot-benchmark?ref=pythonawesome.com

video scene segmentation:

https://github.com/kakaobrain/bassl?ref=pythonawesome.com

mmaction detect actions in video:

https://pythonawesome.com/an-open-source-toolbox-for-video-understanding-based-on-pytorch/

https://github.com/open-mmlab/mmaction2

dense video captioning:

https://www.opensourceagenda.com/projects/dense-video-captioning-pytorch

https://www.opensourceagenda.com/projects/dense-video-captioning-pytorch

seq2seq video captioning:

https://blog.csdn.net/u013010889/article/details/80087601

2d cnn with LSTM video classification:

https://blog.csdn.net/qq_43493208/article/details/104387182

spp-net for image shape unification:

https://github.com/peace195/sppnet

https://github.com/yueruchen/sppnet-pytorch

running pretrained pytorchvideo video classification model from zoo:

https://pytorchvideo.org/docs/tutorial_torchhub_inference

pytorchvideo model zoo:

https://pytorchvideo.readthedocs.io/en/latest/model_zoo.html

(arxiv) end to end generative pretraining multimodal video captioning mv-gpt:

https://arxiv.org/abs/2201.08264v1

video captioning using encoder-decoder:

https://github.com/Shreyz-max/Video-Captioning

video captioning video2text keras implementation:

https://github.com/alvinbhou/Video2Text

video summarization:

https://github.com/shruti-jadon/Video-Summarization-using-Keyframe-Extraction-and-Video-Skimming

pytorch_video video classification:

https://pytorchvideo.org/docs/tutorial_classification

video feature extractor:

https://github.com/hobincar/pytorch-video-feature-extractor