Project structure of: google-research/google-research
__init__.py
Google-Research/Video_Structure license notice.datasets.py
Loads sequence datasets for TensorFlow pipelines.datasets_test.py
Test Keras image classification model with data determinism check.dynamics.py
TensorFlow VRNN model for video keypoint predictiondynamics_test.py
Tests VRNN training, KLDivergence annealing, and dynamics model's sampling schedule.hyperparameters.py
Hyperparameters class for video model configuration.losses.py
Calculates video trajectory separation loss using Gaussian functions and matrix operations.losses_test.py
Tests video structure losses for parallel keypoints.ops.py
Video operations for TensorFlow model: keypoint extraction, map scaling, data augmentation.ops_test.py
Testsadd_coord_channels
and heat map functions.README.md
Unsupervised learning of object structure and dynamics from videos.requirements.txt
TensorFlow GPU version constraint: 1.15.3 or below 2.0.0run.sh
Script for setting up and testing video_structure package.train.py
Trains video model, predicts keypoints, recons images, compiles and validates.vision.py
Vision-enhanced video analysis with encoder-decoder model.vision_test.py
Video Autoencoder Model Test with TensorFlow
README.md
Video timeline modeling dataset for news stories available on Google Driverequirements.txt
Dependencies: TensorFlow, PyTorch for video timeline modelingrun.sh
Bash script sets up Python env, installs deps, runs model.setup.py
vtm setup script: Python module installation, no external packages required__init__.py
Video timeline modeling license noticedataset.py
VTM PyTorch dataset: variable-length video timeline modeling.eval.py
Video timeline modeling evaluation script with accuracy and metrics.main.py
Video timeline model training with Transformers and distillation.__init__.py
Video Timeline Modeling components import.attention_head.py
Video timeline modeling Attention Head class. Calculates attention scores, linear layers, log softmax activation.encoder.py
PyTorch Transformer Encoder with Positional Encodingmodel.py
Video Timeline Modeling with Adjustable Classifiers
test.py
Video timeline modeling module testing.