Project structure of: google-research/robotics_transformer
__init__.pyRobotics Transformer library version 0.1.0, Apache License 2.0, new PyPI release on version change.transformer_mixin.ginConfigures TransformerNetwork for robotics actor-critic model with Adam optimizer.
__init__.pyApache License, Version 2.0 copyright holder notice.film_conditioning_layer.pyFilmConditioning layer: deep learning FiLM technique for image processingfilm_conditioning_layer_test.pyTest: FilmConditioningLayer class, output rank matching.film_efficientnet_encoder.pyEfficientNet models for Keras image classificationfilm_efficientnet_encoder_test.pyFilmEfficientNet cat detection test. Keras vs TF, EfficientNet encoder.preprocessors.pyImage preprocessing for deep learning modelspreprocessors_test.pyTesting image preprocessor functionality.pretrained_efficientnet_encoder.pyEfficientNetEncoder: Pre-trained model for feature extraction.pretrained_efficientnet_encoder_test.pyTests EfficientNet encoder's image classification and encoding.
README.mdEfficient Robotics Transformer Library for Controlrequirements.txtRobotics transformer: Dependencies, absl-py, numpy, tensorflow.sequence_agent.pyRL agent class with SequenceAgent output and training functionality.sequence_agent_test.pyTest SequenceAgent using tf_agents library.sequence_agent_test_set_up.pySequenceAgent test setup and tracking.__init__.pyApache License 2.0, copyright notice for code file.action_tokenizer.pyAction tokenizer for robotics transformer library.action_tokenizer_test.pyActionTokenizer test: accuracy, int32 handling, episode termination.image_tokenizer.pyImage tokenizer using EfficientNet with optional token learnerimage_tokenizer_test.pyImage tokenizer test: checks shape of generated tokens.token_learner.pyToken Learner TF implementation for robotics transformertoken_learner_test.pyTokenLearnerModule TensorFlow test. Batch * seq, num_tokens, embedding_dim output.
transformer.pyTransformer layer with configurable parameterstransformer_network.pyTransformer network for robotics tasks, with training/inference functions.transformer_network_test.pyTest transformer network with parameterized tests and masks.transformer_network_test_set_up.pyConfigures testing parameters for robotics transformer network setup.transformer_test.pyTransformer model testing in robotics_transformer library.